games.jjv.sh
  _   _   _ _   _  _     ___  ___        _      
 |   |_| | | | |_ |_      |    |  | /   |_  |_| 
 |_| | | | | | |_  _| o |_|  |_|  |/  o  _| | | 

                                              _     _                _       
                                             (_)   (_)              | |      
   ___ _  ___ _  _________  ____   ___        _     _  _   __   ___ | |___   
  (  _` |(  _` ||  _   _  )( __ \ / __)      | |   | || | / /  / __)|  _  )  
  | (_| || (_| || | | | | || ___/|___ | _    | |   | || |/ /_ |___ || | | |  
  (___, |(___,_||_| |_| |_|\____)(___/ (_) _ | | _ | ||___/(_)(___/ |_| |_|  
   ___| |                                 | || || || |                       
  (_____)                                 (____)(____)                       

Stoichiometry

Chemical Equation Balancer!

Enter the chemical equation to be balanced:

Optional Info

Enter a compound within the equation to set its grams or moles:
Enter the quantity and unit of this compound:

Samples

Try out some of these sample equations. It balances charge, too!

    H2+O2=>H2O
    Fe(l) + H2O(l) => Fe(2+)(aq) + OH(-)(aq) + H2(g)
    C3H6(OH)2 + O2 -> CO2 + H2O
    Al + I2 -> AlI3
    NH3 + CO2 => (NH2)2CO + H2O
    Zn + HCl → ZnCl2 + H2
    TiCl4 + Mg → Ti + MgCl2
    NaHCO3 ↔ Na2CO3 + CO2+H2O
    Na2CO3(aq) + HCl(aq) →   CO2(g) +   NaCl(aq) +   H2O(l)
    LiBr(aq) + AgNO3(aq) →  LiNO3(aq) + AgBr 		 (s)
    NaOH (aq) +  Cu(NO3)2 (aq) →  Cu(OH)2 (s) +  NaNO3 (aq)
    CaI2(aq) + K3PO4(aq) →  Ca3(PO4)2 (s) +  KI (aq)
    Ag(+) (aq) + CrO4(2-) (aq) → Ag2CrO4 (s)
    Pb(NO3)2(s) + NaI(aq) → PbI2(aq) + NaNO3(aq)
    NaN3(s) + Fe2O3(s) → Na2O(s) + Fe(s) +  N2(g)
    LiOH(s) + CO2(g) → Li2CO3(s) + H2O(l)
    KOH(s) + CO2(g) → K2CO3(s) + H2O(l)
    H2SO4(aq) + Na2CO3(aq) → CO2(g) + H2O(l) + Na2SO4(aq)
    HCl(aq) + Na2CO3(aq) → CO2(g) + H2O(l) + NaCl(aq)
    C3H5(NO3)3(s) = CO2(g) + H2O(g) + N2(g) + O2(g)
    C2H5OH(l) +   O2(g) →  		 CO2(g) +  		 H2O(g)
    CO2(g) + H2O(l) ⇆ H3O(+)(aq) + HCO3(-)(aq)

Source Code

This app is open source! You can see, modify, and distribute the source code.

You can see the source code for the actual solver (under the MIT license) on codeberg, sourcehut or github.